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A random matrix 𝛀𝛀 𝛀 𝛀𝛀 𝑑𝑑𝑑𝑑𝑑 is called an (𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟𝑟-OSE with subspace dimension 𝑟𝑟,
embedding dimension 𝑘𝑘 𝑘 𝑘𝑘, injectivity 𝛼𝛼𝛼𝛼  𝛼𝛼 𝛼𝛼, and dilation 𝛽𝛽𝛽𝛽   if the following
holds for each fixed 𝑟𝑟-dimensional subspace 𝒱𝒱 𝒱 𝒱𝒱 𝑑𝑑 . With probability at least 19/20,

𝛼𝛼𝛼𝛼𝛼𝛼2
2 ≤ ‖𝛀𝛀∗𝒙𝒙𝒙2

2 ≤ 𝛽𝛽𝛽𝛽𝛽𝛽2
2 for all 𝒙𝒙𝒙𝒙𝒙   𝒙
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Typically, a sketching-based randomized algorithm begins by assuming that the random
matrix satisfies the OSE property.
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A random matrix 𝛀𝛀 ∈ 𝔽𝔽 𝑑𝑑𝑑𝑑𝑑 is called an (𝑟𝑟𝑟 𝑟𝑟𝑟-OSI with subspace dimension 𝑟𝑟,
embedding dimension 𝑘𝑘 𝑘 𝑘𝑘, and injectivity 𝛼𝛼𝛼𝛼  𝛼𝛼 𝛼𝛼 when it meets two conditions:
1. Isotropy. On average, the matrix preserves the squared length of each vector:

𝔼𝔼 ‖𝛀𝛀∗𝒙𝒙‖
2
2 = ‖𝒙𝒙‖2

2 for all 𝒙𝒙 ∈ 𝔽𝔽 𝑑𝑑.

2. Injectivity. For each fixed 𝑟𝑟-dimensional subspace 𝒱𝒱 𝒱 𝒱𝒱 𝑑𝑑 , with probability at least
19
20 , 𝛼𝛼 𝛼 𝛼𝒙𝒙‖2

2 ≤ ‖𝛀𝛀∗𝒙𝒙‖2
2 for all 𝒙𝒙 ∈ 𝒱𝒱 𝒱

1

Intuition: Dilation versus injection. Let 𝝎𝝎 ∈ 𝔽𝔽 𝑑𝑑 be
isotropic with 𝔼𝔼𝔼𝝎𝝎𝝎𝝎∗] = I, and define

𝛀𝛀 𝛀𝛀 1
√𝑘𝑘

[𝝎𝝎1 ⋯ 𝝎𝝎𝑘𝑘 ] ∈ 𝔽𝔽 𝑑𝑑𝑑𝑑𝑑, 𝝎𝝎𝑗𝑗
iid∼ 𝝎𝝎.

For any fixed 𝒙𝒙 ∈ 𝔽𝔽 𝑑𝑑 ,

‖𝛀𝛀∗𝒙𝒙‖2
2 = 1

𝑘𝑘

𝑘𝑘

∑
𝑖𝑖𝑖𝑖

|⟨𝝎𝝎𝑖𝑖,𝒙𝒙⟩|
2,

is an average of iid nonnegative terms with mean ‖𝒙𝒙‖2
2.

Dilation is driven by a single unusually large summand
(heavy-tailed marginals inflate 𝛽𝛽), injection failure
requires all summands to be annihilated.
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Spectral formulation. An equivalent statement of the OSI condition can be expressed
in spectral terms. For any fixed matrix 𝑸𝑸 ∈ 𝔽𝔽 𝑑𝑑𝑑𝑑𝑑 with orthonormal columns, suppose

𝜎𝜎2
min(𝛀𝛀∗Q) = 𝜆𝜆min(Q∗𝛀𝛀𝛀𝛀∗Q) ≥ 𝛼𝛼 𝛼 𝛼 with probability at least 19/20.

Then 𝛀𝛀 satisfies the OSI condition.

1

Table 1: Sparse test matrices: Comparison. Theoretical results for sparse test matrices, including the type of
guarantee (OSE or OSI), the embedding dimension 𝑘𝑘 and row sparsity 𝜁𝜁 for sketching an 𝑟𝑟-dimensional subspace,
and the runtime for generalized Nyström .
Guarantee Test matrix Embedding dim. 𝑘𝑘 Row sparsity 𝜁𝜁 Gen. Nyström runtime
OSE CountSketch [Nelson et al. 13’] 𝒪𝒪𝒪𝒪𝒪2) 1 𝒪𝒪𝒪nnz(A) + 𝑛𝑛𝑛𝑛4)

SparseStack [Cohen 16’] 𝒪𝒪𝒪𝒪𝒪 log 𝑟𝑟𝑟 𝒪𝒪𝒪log 𝑟𝑟𝑟 𝒪𝒪𝒪nnz(A) log(𝑟𝑟𝑟𝑟𝑟𝑟  𝑟𝑟2 log3 𝑟𝑟𝑟
SparseStack [Chenakkod et al. 24’] 𝒪𝒪𝒪𝒪𝒪𝒪 𝒪𝒪𝒪log3 𝑟𝑟𝑟 𝒪𝒪𝒪nnz(A) log3(𝑟𝑟𝑟𝑟𝑟𝑟  𝑟𝑟2)

OSI SparseIID [Tropp 25’] 𝒪𝒪𝒪𝒪𝒪𝒪 𝒪𝒪𝒪log 𝑟𝑟𝑟 𝒪𝒪𝒪nnz(A) log(𝑟𝑟𝑟𝑟𝑟𝑟  𝑟𝑟2)
SparseStack (This work) 𝒪𝒪𝒪𝒪𝒪𝒪 𝒪𝒪𝒪log 𝑟𝑟𝑟 𝒪𝒪𝒪nnz(A) log(𝑟𝑟𝑟𝑟𝑟𝑟  𝑟𝑟2)

None SparseStack (Practice) 2𝑟𝑟 4 𝒪𝒪𝒪nnz(A) + 𝑛𝑛𝑛𝑛2)
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The SparseStack test matrix is determined by the ambient dimension 𝑑𝑑, row sparsity 𝜁𝜁 , and block size 𝑏𝑏, giving
embedding dimension 𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘 . It is defined blockwise as

𝛀𝛀 𝛀𝛀 1
√𝜁𝜁

⎡
⎢
⎢
⎢
⎢
⎣

𝜚𝜚11e∗
𝑠𝑠11 ⋯ 𝜚𝜚1𝜁𝜁e∗

𝑠𝑠1𝜁𝜁
𝜚𝜚21e∗

𝑠𝑠21 ⋯ 𝜚𝜚2𝜁𝜁e∗
𝑠𝑠2𝜁𝜁

⋮ ⋱ ⋮
𝜚𝜚𝑑𝑑𝑑e∗

𝑠𝑠𝑑𝑑𝑑 ⋯ 𝜚𝜚𝑑𝑑𝑑𝑑e∗
𝑠𝑠𝑑𝑑𝑑𝑑

⎤
⎥
⎥
⎥
⎥
⎦

∈ 𝔽𝔽 𝑑𝑑𝑑𝑑𝑑, 𝜚𝜚𝑖𝑖𝑖𝑖 ∼ Rademacher,
𝑠𝑠𝑖𝑖𝑖𝑖 ∼ Uniform{1, … , 𝑏𝑏𝑏𝑏

Here e𝑖𝑖 ∈ 𝔽𝔽 𝑏𝑏 is the 𝑖𝑖th standard basis vector. A SparseStack is equivilant to the row tiling of 𝜁𝜁 CountSketches.

• (𝑟𝑟𝑟 1/2)-OSI guarantee with 𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘𝑘𝑘 and 𝜁𝜁 𝜁 log(𝑟𝑟𝑟 row sparsity

• Sketching time: For A ∈ 𝔽𝔽 𝑛𝑛𝑛𝑛𝑛 , the sketch A𝛀𝛀 requires only 𝒪𝒪𝒪𝒪𝒪 nnz(A)) operations
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For many years, the randomized numerical linear algebra community has increas-
ingly favored structured sketchingmatrices, such as sparse embeddings and randomized
trigonometric transforms over their (dense) Gaussian counterparts.

Despite their empirical success, these matrices are often used without strong theo-
retical guarantees. In this work, we relax the standard oblivious subspace embedding
(OSE) condition and demonstrate that many structured random matrices can be shown
to produce near-optimal error using only bounds on the minimal singular value. With
these new tools we confirm a long held suspicion: Structured test matrices provide
the same accuracy as Gaussian test matrices, while the structure allows us to de-
sign far more efficient algorithms.
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TheKhatri–Rao test matrix is constructed from an isotropic base distribution 𝒗𝒗 ∈ 𝔽𝔽 𝑑𝑑0 . Let ℓ denote the Kronecker
depth and 𝑘𝑘 the embedding dimension. Then the Khatri–Rao test matrix is defined as

𝛀𝛀 = 1
√𝑘𝑘

[𝝎𝝎1 ⋯ 𝝎𝝎𝑘𝑘 ] ∈ 𝔽𝔽 𝑑𝑑ℓ
0 ×𝑘𝑘, 𝝎𝝎𝑖𝑖 ∶= 𝝎𝝎(1)

𝑖𝑖 ⊗ ⋯ ⊗ 𝝎𝝎(ℓ)
𝑖𝑖 , 𝝎𝝎(𝑗𝑗𝑗

𝑖𝑖
iid∼ 𝒗𝒗.

• (𝑟𝑟𝑟 1/2)-OSI guarantee with 𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘𝑘ℓ
𝒗𝒗 𝑟𝑟𝑟 for Kronecker depth ℓ where 𝐶𝐶𝒗𝒗 is a distribution

dependent constant.

• Sketching time: In the Kronecker matvec access model, A ∈ ℝ𝑑𝑑ℓ×𝑑𝑑ℓ can be sketched
efficiently using tensor networks in 𝒪𝒪𝒪𝒪𝒪 𝒪𝒪𝒪 2) time, avoiding dense Gaussian embeddings

1

The SparseRTT test matrix is defined as

𝛀𝛀 ∶= 𝑫𝑫𝑫𝑫𝑫𝑫 ∈ 𝔽𝔽 𝑑𝑑𝑑𝑑𝑑 where
𝑫𝑫 ∈ 𝔽𝔽 𝑑𝑑𝑑𝑑𝑑 is a random diagonal matrix,
𝑭𝑭 ∈ 𝔽𝔽 𝑑𝑑𝑑𝑑𝑑 is a trigonometric transform,
𝑺𝑺 ∈ 𝔽𝔽 𝑑𝑑𝑑𝑑𝑑 is a SparseCol matrix.

A SparseCol a sparse random matrix with 𝜉𝜉 nnz enteries per column chosen without replacement.

• (𝑟𝑟𝑟 1/2)-OSI guarantee with 𝑘𝑘𝑘  𝑘𝑘𝑘𝑘𝑘𝑘 and column sparsity 𝜁𝜁 𝜁𝜁𝜁𝜁 log 𝑟𝑟𝑟
• Sketching time: For A ∈ 𝔽𝔽 𝑛𝑛𝑛𝑛𝑛 , the sketch A𝛀𝛀 requires 𝒪𝒪𝒪𝒪𝒪𝒪𝒪 log 𝑟𝑟𝑟 operations

1
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